Publications by Kathrin H. Hopmann

Peer-Reviewed Scientific Articles

  1. Synthesis of Indoles and Pyrroles Utilizing Iridium Carbenes Generated from Sulfoxonium Ylides
    Vaitla, J.; Bayer, A.; Hopmann, K.H, Angewandte Chemie - International Edition 2017, Accepted.
  2. How Accurate is DFT for Iridium-Mediated Chemistry?
    Hopmann, K.H, Organometallics 2016, 35, 3795–3807 (Featured on the Cover)
  3. Structure, Substitution and Hydrolysis of Bis(trifluorobenzoylacetonato-O,O’)dichloro titanium(IV): an Experimental and Computational Study. Kuhn, A.; Tischlik, S.; Hopmann, K.H ; Landman, M.; van Royen, P.H.; Conradie, J. Inorganica Chimica Acta 2016.

  4. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase, Isaksen, G. V.; Hopmann, K.H.; Åqvist, J.; Brandsdal, B. O. Biochemistry 2016, 55, 2153–2162.

  5. Singlet–Triplet Gaps of Cobalt Nitrosyls: Insights from Tropocoronand Complexes, Hopmann, K.H.; Conradie, J.; Tangen, E.; Tonzetich, Z. J.; Lippard, S. J.; Ghosh, A. Inorg. Chem. 2015, 54, 7362–7367.

  6. Iron-Brønsted-acid-catalysed asymmetric hydrogenation: Mechanism and selectivity-determining interactions, Hopmann, K.H.*; Chem. Eur. J. 2015, 2110020–10030. (Featured as Frontispiece).

  7. (Editorial) FemEx—female excellence in theoretical and computational chemistry Mennucci, B.; Eisenstein, O.; Fliegl, H; Hopmann, K.H.; Helgaker, T.; Ruud, K. International J. Quantum Chem. 2015, 115, 1195–1196.
  8. Quantum chemical studies of asymmetric reactions: Historical aspects and recent examples , Hopmann, K.H.*, International J. Quantum Chem. 2015, 115, 1232-1249. 

  9. Iridium-PHOX-mediated alkene hydrogenation: Isomerisation influences the stereochemical outcome, Hopmann, K.H.*; L. Frediani, Bayer, A. Organometallics, 2014, 33, 2790–2797.

  10. Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch, Hopmann, K.H.*; Inorg. Chem., 2014, 53, 2760.

  11. Enantioselective Imine Hydrogenation with iridium Catalysts: Reactions, Mechanisms, and Stereocontrol, Hopmann, K.H.*; Bayer, A. Coord. Chem. Rev. 2014, 268, 59-82.

  12. Cobalt-Bis(imino)pyridine-Catalyzed Asymmetric Hydrogenation: Electronic Structure, Mechanism, and Stereoselectivity,
    Hopmann, K. H.*, Organometallics 2013, 32, 6388.

  13. Substitution kinetics of aryl diolato ligands at dichlorobis(betadiketonato-O,O')titanium(IV):  Experimental and Computational study. 
    Hopmann, K.H.; Kuhn, A.; Conradie, J. Polyhedron 2014, 67, 231.

  14. Circular Dichroism and Optical Rotation of Lactamide and 2-Aminopropanol in Aqueous Solution Pikulska, A.; Hopmann, K.H.; Bloino, J.; Pecul, M. J. Phys. Chem. B 2013, 117, 5136–47.        

  15. Determination of Absolute Configuration and Conformation of a Cyclic Dipeptide by NMR and Chiral Spectroscopic Methods Li, X.-J.; Hopmann, K.H.*; Hudecova, J.; Isaksson, J.; Novotna, J.; Stensen, W.; Andrushchenko, V.; Urbanova, M.; Svendsen, J. S.; Bour, P.; Ruud, K. J. Phys. Chem. A, 2013, 117, 1721–1736.

  16. Absolute Configuration of a Cyclic Dipeptide Reflected in Vibrational Optical Activity: ab Initio and Experimental Investigation Li, X.; Hopmann, K. H.; Hudecova, J.; Stensen, W.; Novotná, J.; Urbanová, M.; Svendsen, J. S.; Bouř, P.; Ruud, K. J. Phys. Chem. A 2012, 116, 2554-2563.

  17. Determining the Absolute Configuration of two Marine Compounds Using Vibrational Chiroptical Spectroscopy  Hopmann, K.H.*; Šebestík, J.; Novotná, J.; Stensen, W.; Urbanová, M.; Svenson, J.; Svendsen, J. S.; Bouř, P; Ruud, K., J. Org. Chem. 2012, 77, 858-69.

  18. Correction of the Vibrational Broadening in Molecular Dynamics Clusters with the Normal Mode Optimization Method Hudecova, J. ; Hopmann, K. H.; Bouř, P. J. Phys. Chem. B. 2012, 116, 336-342.

  19. Calibration of DFT Functionals for the Prediction of 57Fe Mössbauer Spectral Parameters in Iron-Nitrosyl and Iron-Sulfur Complexes Sandala, G. M.; Hopmann, K. H.; Ghosh, A.; Noodleman, L. J. Chem. Theory. Comp. 2011, 7, 3232-3247.        

  20. Hemoglobin as Nitrite Anhydrase: Modeling Methemoglobin-Mediated N2O3 Formation Hopmann, K.H.; Cardey, B.; Gladwin, M.T.; Kim-Shapiro, D.B.; Ghosh, A. Chem. Eur. J. 2011, 17, 6348-6358 (Article featured on the Cover)

  21. Mechanism of Cobalt-Porphyrin-Catalyzed Aziridination Hopmann, K.H.; Ghosh, A. ACS Catalysis 2011, 1, 597-600.

  22. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra Hopmann, K.H.*; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, M.; Bouř, P., J. Phys. Chem. B. 2011, 115, 4128-4137.

  23. On the Mechanism of Iridium-Catalysed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study Hopmann, K.H.*; Bayer, A. Organometallics 2011,30, 2483-2497.

  24. Spin Coupling in Roussin’s Red and Black Salts Hopmann, K.H.; Ghosh, A.; Noodleman, L., Chem. Eur. J. 2010, 16, 10397–10408.

  25. Understanding the Unusually Straight: A Search for MO Insights into Linear {FeNO}7 Units Conradie, J.; Hopmann, K.H.; Ghosh, A., J. Phys. Chem. B 2010, 114, 8517–8524.

  26. Substitution and Isomerisation of Asymmetric β-Diketonato Rhodium(I) Complexes: A Crystallographic and Computational Study Hopmann, K.H.; Stuurman, N. F.; Muller, A.; Conradie, J. Organometallics 2010, 29, 2446-2458.

  27. Density Functional Theory Calculations on Mössbauer Parameters of Nonheme Iron Nitrosyls Hopmann, K.H.; Ghosh, A.; Noodleman, L., Inorg. Chem. 2009, 48, 9155-9165.

  28. Broken-Symmetry DFT Spin Densities of Iron Nitrosyls, Including Roussin's Red and Black Salts: Striking Differences between Pure and Hybrid Functionals  Hopmann, K.H.; Conradie, J.; Ghosh, A., J. Phys. Chem. B 2009, 113, 10540-10547.

  29. Density Functional Theory Study of Substitution at the Square-Planar Acetylacetonato-dicarbonyl-rhodium(I) Complex  Hopmann, K.H.; Conradie, J., Organometallics 2009, 28, 3710-3715.

  30. On the Role of Tyrosine as Catalytic Base in Nitrile Hydratase, Hopmann, K.H.; Himo, F., Eur. J. Inorg. Chem. 2008, 3452-3459.

  31. Quantum Chemical Modeling of the Dehalogenation Reaction of Haloalcohol Dehalogenase Hopmann, K.H.; Himo, F., J. Chem. Theory Comp. 2008, 4, 1129-1137.

  32. Cyanolysis and Azidolysis of Epoxides by Haloalcohol Dehalogenase: Theoretical Study of the Reaction Mechanism and Origins of Regioselectivity  Hopmann, K.H.; Himo, F., Biochemistry 2008, 47, 4973 – 4982.

  33. Theoretical Investigation of the Second-Shell Mechanism of Nitrile Hydratase Hopmann, K.H.; Himo, F., Eur. J. Inorg. Chem. 2008, 9, 1406-1412.

  34. Theoretical Investigation of the First-Shell Mechanism of Nitrile Hydratase Hopmann, K.H.; Guo, J.D.; Himo, F., Inorg. Chem. 2007, 46, 4850-4856.

  35. Efficient Expression of Recombinant Human Monoclonal Antibodies in Drosophila S2 cells Johansson, D.X.; Drakenberg, K.; Hopmann, K.H.; Schmidt, A.; Yari, F.; Hinkula, J.; Persson, M.A., J. Immunol. Methods. 2007, 318, 37-46.

  36. Insights into the Reaction Mechanism of Soluble Epoxide Hydrolase from Theoretical Active Site Mutants   Hopmann, K.H.; Himo, F., J. Phys. Chem. B. 2006, 110, 21299-21310.

  37. Theoretical study of the Full Reaction Mechanism of Human Soluble Epoxide Hydrolase Hopmann, K.H.; Himo, F.  Chemistry Eur. J. 2006, 12, 6898-6909.

  38. Catalytic Mechanism of Limonene Epoxide Hydrolase, a Theoretical Study Hopmann, K.H.; Hallberg, B.M.; Himo, F., J. Am. Chem. Soc. 2005, 127, 14339-14347.

  39. Substrate specificity of the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) assessed by mutagenesis and analysis of synthetic peptides: substrate residues distant from the scissile bond are critical for proteolysis Laursen, L.S.; Overgaard, M.T.; Nielsen, C.G., Boldt, H.B.; Hopmann, K.H.; Conover, C.A.; Sottrup-Jensen, L.; Giudice, L.C.; Oxvig, C., Biochem. J. 2002, 367, 31-40.
     

Book Chapters

  1. Electronic Structure, Bonding, Spin Coupling, and Energetics of Polynuclear Iron Sulfur Clusters - A Broken Symmetry DFT Perspective, Hopmann, K.H.; Pelmenschikov, V.; Han Du, W.-G.; Noodleman,L.; in Spin states in Biochemistry and Inorganic Chemistry, M. Swart, Ed., Wiley, 2015, pp. 297-326. 
  2. Quantum Chemical Modeling of Enzymatic Reactions – Applications to Epoxide-Transforming Enzymes Hopmann, K.H.; Himo, F. in Comprehensive Natural Products II, Chemistry and Biology; Mander, L., Lui, H.-W., Eds.; Elsevier: Oxford, 2010; vol. 8, 719–747.

  3. Electronic Structure Calculations: Transition Metal-NO Complexes Ghosh, A.; Hopmann, K.H.; Conradie, J. in Computational Inorganic and Bioinorganic Chemistry; Solomon, E. I., Scott, R. A., King, R. B., Eds.; John Wiley & Sons, Ltd: Chichester, U.K., 2009; pp 389-410.

Popular Science Articles

  1. Datamaskiner beregner verden  Hopmann, K. H.; Ruud, K. Nordlys 27.09.2010

  2. Kiroptisk spektroskopi Hopmann, K.H.; Ruud, K. Kjemi  2011

Theses

  1. Nitrile Hydratases and Epoxide-Transforming Enzymes: Quantum Chemical Modeling of Reaction Mechanisms and Selectivities
    Hopmann, K.H., PhD Thesis, ISBN 9789171786401, Royal Institute of Technology (KTH) Stockholm, Sweden 2008, http://www.diva-portal.org/kth/abstract.xsql?dbid=4668

  2. Quantum Chemical Studies of Epoxide-Transforming Enzymes Hopmann, K.H., Licentiate Thesis, ISBN 9789171786401, Royal Institute of Technology (KTH) Stockholm, Sweden, 2007, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4390

Published Apr. 23, 2014 10:31 AM - Last modified Feb. 17, 2017 6:16 PM